Deciphering diversity at er loci for diversification of powdery mildew resistance in pea | Scientific Reports – Nature.com

  • Smýkal, P. et al. Pea (Pisum sativum L.) in the genomic era. Agronomy 2, 74–115 (2012).

    Article  Google Scholar 

  • Avci, M. A. & Ceyhan, E. Correlations and genetic analysis of pod characteristics in pea (Pisum sativum L.). Asian J. Plant Sci. 5, 1–4 (2006).

    Google Scholar 

  • Dixon, G. R. Powdery mildew of vegetables and allied crops. In Powdery Mildew (ed. Speaure, D. M.) (Academic Press, 1987).

    Google Scholar 

  • Nisar, M., Ghafoor, A., Khan, M. R. & Qureshi, A. S. Screening of Pisum sativum L. germplasm against Erysiphe pisi Syd. Acta Biol. Crac. Ser. Bot. 48, 33–37 (2006).

    Google Scholar 

  • Suneetha, T., Gopinath, S. M. & Naik, S. L. Identification of resistance gene analogs (RGAs) linked to powdery mildew resistance in Peas. Int. J. Innov. Res. Adv. Eng. 6, 33–36 (2014).

    Google Scholar 

  • Banyal, D. K., Singh, A. & Tyagi, P. Pathogenic variability in Erysiphe pisi causing powdery mildew of pea. Himachal J. Agric. Res 31, 87–92 (2005).

    Google Scholar 

  • Attanayake, R. N., Glawe, D. A., McPhee, K. E., Dugan, F. M. & Chen, W. Erysiphe trifolii—A newly recognized powdery mildew pathogen of pea. Plant Pathol. https://doi.org/10.1093/bioinformatics/btm404 (2010).

    Article  Google Scholar 

  • Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Article  Google Scholar 

  • Shahid, M., Ahmed, B., Zaidi, A. & Khan, M. S. Toxicity of fungicides to: Pisum sativum: A study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Adv. 8, 38483–38498 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Heringa, K. J., Vannorel, A. & Tazelaar, M. F. Resistance to powdery mildew (Erysiphe polygoni DC) in peas (Pisum sativum L.). Euphy 13, 163–169 (1969).

    Article  Google Scholar 

  • Gupta, S. K. & Thind, T. S. Disease Problems in Vegetable Production 342–342 (Kalyani Publishers, 2006).

    Google Scholar 

  • Tiwari, K. R., Penner, G. A. & Warkentin, T. D. Inheritance of powdery mildew resistance in pea. Can. J. Plant Sci. 77, 307–310 (1997).

    Article  Google Scholar 

  • Nigussie, T., Seid, A., Derje, G., Tesfaye, B., Chemeda, F., Adane, A., Abiy, T., Fekede, A. & Kiros, M. Review of research on diseases food legumes. Abraham Tadesse (Eds). Increasing crop production through improved plant protection. (1): 85–124. (2008)

  • Rahman, M. M., Syed, M., Akter, A., Alam, M. M. & Ahsan, M. M. Genetic variability, correlation and path coefficient analysis of morphological traits in transplanted aman rice (Oryza sativa L.). Am. Eurasian J. Agric. Environ. Sci. 14(5), 387–391 (2014).

    Google Scholar 

  • Chaudhary, J. & Banyal, D. K. Evaluation of pea genotypes for resistance against powdery mildew caused by Erysiphe pisi. Ind. Phytopathol. 70, 69–74 (2017).

    Google Scholar 

  • Rana, J. C. et al. Screening of pea germplasm for resistance to powdery mildew. Euphytica 189, 271–282 (2013).

    CAS  Article  Google Scholar 

  • Banyal, D. K. & Rana, S. K. Fungicidal spray schedule for the management of pea powdery mildew. J. Mycol. Plant Pathol. 33, 302–304 (2003).

    Google Scholar 

  • Takamatsu, S., Ito, H., Shiroya, Y., Kiss, L. & Heluta, V. First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage. Mycologia 107, 475–489 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Kiss, L. Advances in the identification of emerging powdery mildew fungi using morphological and molecular data. Acta Microbiol. Immunol. Hung. 49, 245–248 (2002).

    CAS  PubMed  Article  Google Scholar 

  • Baiswar, P. et al. Molecular evidence of Erysiphe pisi on pea and E. trifoliorum on white clover in northeast India. Australas. Plant Dis. Notes 10, 1–3 (2015).

    Article  Google Scholar 

  • Kapoor, A. S. & Chaudhary, H. K. Mode of the perpetuation of Erysiphe pisi in dry temperate zones of Himachal Pradesh. Indian Phytopathol. 48, 77–78 (1995).

    Google Scholar 

  • Pal, A. B., Brahmapp, Rawal, R. D. & Ullasa, B. A. Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis. 64, 1085 (1980).

    Article  Google Scholar 

  • Fondevilla, S., Carver, T. L. W., Moreno, M. T. & Rubiales, D. Identification and characterization of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed. 126, 113–119 (2007).

    Article  Google Scholar 

  • Fondevilla, S., Chattopadhyay, C., Khare, N. & Rubiales, D. Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. Eur. J. Plant Pathol. 136, 557–563 (2013).

    CAS  Article  Google Scholar 

  • Sun, S. et al. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. Crop J. 3, 489–499 (2015).

    Article  Google Scholar 

  • Sun, S. et al. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theor. Appl. Genet. 129, 909–919 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Fondevilla, S., Rubiales, D., Moreno, M. T. & Torres, A. M. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol. Breed. 22, 193–200 (2008).

    CAS  Article  Google Scholar 

  • Fondevilla, S., Carver, T. L. W., Moreno, M. T. & Rubiales, D. Macroscopic and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur. J. Plant Pathol. 115, 309–321 (2006).

    Article  Google Scholar 

  • Harland, S. C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2, 263–269 (1948).

    CAS  PubMed  Article  Google Scholar 

  • Kumar, H. & Singh, R. B. Genetic analysis of adult plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 30, 147–151 (1981).

    Article  Google Scholar 

  • Vaid, A. & Tyagi, P. D. Genetics of powdery mildew resistance in pea. Euphytica 96, 203–206 (1997).

    Article  Google Scholar 

  • Zeng, L., Li, M. Q. & Yang, X. M. Identification of resistance of peas resources to powdery mildew. Grass. Turf 32, 35–38 (2012).

    Google Scholar 

  • Wang, Z. Y. et al. Identification of powdery mildew resistance gene in pea line X9002. Acta Agron. Sin. (China) 41, 515 (2015).

    CAS  Article  Google Scholar 

  • Jørgensen, I. H. Discovery, characterization and exploitation of MLO powdery mildew resistance in barley. Euphytica 63, 141–152 (1992).

    Article  Google Scholar 

  • Humphry, M., Reinstädler, A., Ivanov, S., Bisseling, T. & Panstruga, R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol. Plant Pathol. 12, 866–878 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sun, S. et al. Two novel er1 alleles conferring powdery mildew (Erysiphe pisi) resistance identified in a worldwide collection of pea (Pisum sativum L.) germplasms. Int. J. Mol. Sci. 20, 5071 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • Bai, Y. L. et al. Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol. Plant Microbe Interact. 21, 30–39 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Piffanelli, P. et al. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129, 1076–1085 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zheng, Z. et al. Loss of function in MLO orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8, e70723 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Feechan, A., Jermakow, A. M., Torregrosa, L., Panstruga, R. & Dry, I. B. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 35, 1255 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Winterhagen, P., Howard, S. F., Qiu, W. & Kovacs, L. Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. Am. J. Enol. Vitic. 59, 159–168 (2008).

    CAS  Google Scholar 

  • Büschges, R. et al. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 88, 695–705 (1997).

    PubMed  Article  Google Scholar 

  • Filiz, E. & Vatansever, R. Genome-wide identification of mildew resistance locus O (MLO) genes in tree model poplar (Populus trichocarpa): Powdery mildew management in woody plants. Eur. J. Plant Pathol. 152, 95–109 (2018).

    Article  Google Scholar 

  • Kusch, S., Pesch, L. & Panstruga, R. Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol. Evol. 8, 878–895 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • Brinton, J. et al. A haplotype-led approach to increase the precision of wheat breeding. Commun. Biol. 3, 712 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hu, G. et al. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nat. Genet. 54, 73–83 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Maung, T. Z., Chu, S. H. & Park, Y. J. Functional haplotypes and evolutionary insight into the granule-bound starch synthase II (GBSSII) gene in Korean rice accessions (KRICE_CORE). Foods 10, 2359 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Garcia, E. et al. Haplotype network branch diversity, a new metric combining genetic and topological diversity to compare the complexity of haplotype networks. PLoS ONE 16, e0251878 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mendez-Harclerode, F. M. et al. Molecular evidence for high levels of intrapopulation genetic diversity in woodrats (Neotoma Micropus). J. Mammal. 88, 360–370 (2007).

    PubMed  Article  Google Scholar 

  • Cassens, I. et al. The phylogeography of dusky dolphins (Lagenorhynchus obscrus): A critical examination of network methods and rooting procedures. Mol. Ecol. 12, 1781–1792 (2003).

    CAS  PubMed  Article  Google Scholar 

  • Cassens, I., Mardulyn, P. & Milinkovich, M. C. Evaluating intraspecific “network” construction methods using simulated sequence data: Do existing algorithms outperform the Global Maximum Parsimony approach?. Syst. Biol. 54, 363–372 (2005).

    PubMed  Article  Google Scholar 

  • Wooley, S. M., Posada, D. & Crandall, K. A. A comparison of phylogenetic network methods using computer simulation. PLoS ONE 3, e1913 (2008).

    ADS  Article  Google Scholar 

  • Kong, S., Sánchez-Pacheco, S. & Murphy, R. On the use of median-joining networks in evolutionary biology. Cladistics. 32, 691–699 (2015).

    PubMed  Article  Google Scholar 

  • Banyal, D. K., Singh, A., Upmanyu, S., Chaudhary, J. & Sharma, P. N. Diversity analysis of Erysiphe pisi populations causing pea powdery mildew in Himachal Pradesh. Indian Phytopathol. 67, 263–267. https://doi.org/10.1038/nprot.2006.83 (2014).

    CAS  Article  Google Scholar 

  • Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. https://doi.org/10.1093/molbev/msr121 (2006).

    Article  PubMed  Google Scholar 

  • Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msx248 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. https://doi.org/10.1111/j.1365-3059.2010.02306.x (1999).

    Article  PubMed  Google Scholar 

  • Leave a Reply