Modification of the Folmer primers for the cytochrome c oxidase gene facilitates identification of mosquitoes | Parasites & Vectors


  • Dieme C, Bechah Y, Socolovschi C, Audoly G, Berenger JM, Faye O, et al. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc Natl Acad Sci. 2015;112:8088–93. https://doi.org/10.1073/pnas.1413835112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benelli G, Mehlhorn H. Mosquito-borne diseases implications for public health in: parasitology research monographs. 1st ed. Cham: Springer International Publishing; 2018.

    Book 

    Google Scholar
     

  • Mosquito Taxonomic Inventary. https://mosquito-taxonomic-inventory.myspecies.info/valid-species-list. Accessed on Sep 2022

  • Anoopkumar AN, Puthur S, Rebello S, Aneesh EM. Molecular characterization of Aedes, Culex, Anopheles, and Armigeres vector mosquitoes inferred by mitochondrial cytochrome oxidase I gene sequence analysis. Biologia. 2019;74:1125–38. https://doi.org/10.2478/s11756-019-00231-0.

    Article 
    CAS 

    Google Scholar
     

  • Mh-T L, Ab V, In N, Ignacio R-A, Barrero E, Thorne L, et al. DNA barcoding of British mosquitoes (Diptera, Culicidae) to support species identification, discovery of cryptic genetic diversity and monitoring invasive species. Zookeys. 2019;832:57–76. https://doi.org/10.3897/zookeys.832.32257.

    Article 

    Google Scholar
     

  • Valentine MJ, Hoque MM, Wang C, Kelly PJ. Rickettsia felis, the agent of flea-borne spotted fever, in mosquitoes on St Kitts West Indies. Lancet Microbe. 2021;2:e93. https://doi.org/10.1016/S2666-5247(21)00026-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benelli G. Research in mosquito control: current challenges for a brighter future. Parasitol Res. 2015;114:2801–5. https://doi.org/10.1007/s00436-015-4586-9.

    Article 
    PubMed 

    Google Scholar
     

  • Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, et al. Identifying the main mosquito species in China based on DNA barcoding. PLoS One. 2012;7:e47051. https://doi.org/10.1371/journal.pone.0047051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adilah-Amrannudin N, Hamsidi M, Ismail NA, Dom NC, Ismail R, Ahmad AH, et al. Aedes albopictus in urban and forested areas of Malaysia: a study of mitochondrial sequence variation using the CO1 marker. Trop Biomed. 2018;35:639–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Gratz NG. Emerging and resurging vector-borne diseases. Annu Rev Entomol. 1999;44:51–75. https://doi.org/10.1146/annurev.ento.44.1.51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–3. https://doi.org/10.1038/nature06536.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Souza A, Multini LC, Marrelli MT, Wilke ABB. Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance. Acta Trop. 2020;211:105593. https://doi.org/10.1016/j.actatropica.2020.105593.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carter TE, Yared S, Hansel S, Lopez K, Janies D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 2019;18:135. https://doi.org/10.1186/s12936-019-2768-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. P Roy Soc B-Biol Sci. 2003;270:313–21. https://doi.org/10.1098/rspb.2002.2218.

    Article 
    CAS 

    Google Scholar
     

  • Cywinska A, Hunter FF, Hebert PD. Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol. 2006;20:413–24. https://doi.org/10.1111/j.1365-2915.2006.00653.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walton C, Sharpe RG, Pritchard SJ, Thelwell NJ, Butlin RK. Molecular identification of mosquito species. Biol J Linn Soc. 1999;68:241–56. https://doi.org/10.1111/j.1095-8312.1999.tb01168.

    Article 

    Google Scholar
     

  • Werblow A, Flechl E, Klimpel S, Zittra C, Lebl K, Kieser K, et al. Direct PCR of indigenous and invasive mosquito species: a time- and cost-effective technique of mosquito barcoding. Med Vet Entomol. 2016;30:8–13. https://doi.org/10.1111/mve.12154.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, et al. DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors. 2014. https://doi.org/10.1186/s13071-014-0569-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batovska J, Blacket MJ, Brown K, Lynch SE. Molecular identification of mosquitoes (Diptera: Culicidae) in Southeastern Australia. Ecol Evol. 2016;6:3001–11. https://doi.org/10.1002/ece3.2095.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azari-Hamidian S, Yaghoobi-Ershadi MR, Javadian E, Abai MR, Mobedi I, Linton YM, et al. Distribution and ecology of mosquitoes in a focus of dirofilariasis in northwestern Iran, with the first finding of filarial larvae in naturally infected local mosquitoes. Med Vet Entomol. 2009;23:111–21. https://doi.org/10.1111/j.1365-2915.2009.00802.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, et al. Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res. 2013;112:1787–90. https://doi.org/10.1007/s00436-012-3230-1.

    Article 
    PubMed 

    Google Scholar
     

  • Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K, Ssenfuka F, et al. Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol. 2009;90:2669–78. https://doi.org/10.1099/vir.0.014183-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ergunay K, Gunay F, Erisoz Kasap O, Oter K, Gargari S, Karaoglu T, et al. Serological, molecular and entomological surveillance demonstrates widespread circulation of West Nile virus in Turkey. PLoS Negl Trop Dis. 2014;8:e3028. https://doi.org/10.1371/journal.pntd.0003028.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemme RR, Thomas CL, Chadee DD, Severson DW. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl Trop Dis. 2010;4:e634. https://doi.org/10.1371/journal.pntd.0000634.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature. 2019;574:404–8. https://doi.org/10.1038/s41586-019-1622-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huhtamo E, Putkuri N, Kurkela S, Manni T, Vaheri A, Vapalahti O, et al. Characterization of a novel flavivirus from mosquitoes in northern Europe that is related to mosquito-borne flaviviruses of the tropics. J Virol. 2009;83:9532–40. https://doi.org/10.1128/JVI.00529-09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kronefeld M, Kampen H, Sassnau R, Werner D. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors. 2014. https://doi.org/10.1186/1756-3305-7-30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurito M, Oliveira TM, Almiron WR, Sallum MA. COI barcode versus morphological identification of Culex (Culex) (Diptera: Dulicidae) species: a case study using samples from Argentina and Brazil. Mem Inst Oswaldo Cruz. 2013;108:110–22. https://doi.org/10.1590/0074-0276130457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Versteirt V, Schaffner F, Garros C, Dekoninck W, Coosemans M, Van Bortel W. Introduction and establishment of the exotic mosquito species Aedes japonicus japonicus (Diptera: Culicidae) in Belgium. J Med Entomol. 2009;46:1464–7. https://doi.org/10.1603/033.046.0632.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, et al. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour. 2015;15:449–57. https://doi.org/10.1111/1755-0998.12318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werner D, Kronefeld M, Schaffner F, Kampen H. Two invasive mosquito species, Aedes albopictus and Aedes japonicus japonicus, trapped in south-west Germany, July to August 2011. Euro Surveill. 2012. https://doi.org/10.2807/ese.17.04.20067-en.

    Article 
    PubMed 

    Google Scholar
     

  • Bourke BP, Oliveira TP, Suesdek L, Bergo ES, Sallum MAM. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasite Vector. 2013. https://doi.org/10.1186/1756-3305-6-111.

    Article 

    Google Scholar
     

  • Kumar NP, Rajavel AR, Natarajan R, Jambulingam P. DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol. 2007;44:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noureldin E, Tan D, Daffalla O, Almutairi H, Ghzwani J, Torno M, et al. DNA barcoding of potential mosquito disease vectors (Diptera Culicidae) in Jazan region Saudi Arabia. Pathogens. 2022. https://doi.org/10.3390/pathogens11050486.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barua S, Hoque MM, Kelly PJ, Poudel A, Adekanmbi F, Kalalah A, et al. First report of Rickettsia felis in mosquitoes, USA. Emerg Microbes Infect. 2020;9:1008–10. https://doi.org/10.1080/22221751.2020.1760736.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoque MM, Barua S, Kelly PJ, Chenoweth K, Kaltenboeck B, Wang CM. Identification of Rickettsia felis DNA in the blood of domestic cats and dogs in the USA. Parasite Vector. 2020. https://doi.org/10.1186/s13071-020-04464-w.

    Article 

    Google Scholar
     

  • Valentine MJ, Ciraola B, Jacobs GR, Arnot C, Kelly PJ, Murdock CC. Effects of seasonality and land use on the diversity, relative abundance, and distribution of mosquitoes on St. Kitts West Indies. Parasit Vectors. 2020;13:543. https://doi.org/10.1186/s13071-020-04421-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darsie RF, Ward RA, Chang CC. Identification and geographical distribution of the mosquitoes of North America, north of Mexico. Fresno, Calif: American Mosquito Control Association 1981.

  • Brass DA. Mosquitoes of the southeastern United States. Choice: Current Reviews for Academic Libraries. 2013 51 4:667

  • Belkin JN, Heinemann SJ, Page WA. The Culicidae of Jamaica (Insecta, Diptera) [(Mosquito studies, XXI)]. Kingston: Institute of Jamaica; 1970.

  • Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol. 2003;40:36–51. https://doi.org/10.1603/0022-2585-40.1.36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harbach RE. Culex pipiens: species versus species complex taxonomic history and perspective. J Am Mosq Control Assoc. 2012;28:10–23. https://doi.org/10.2987/8756-971X-28.4.10.

    Article 
    PubMed 

    Google Scholar
     

  • Mohammed H, Evanson J, Revan F, Lee E, Krecek RC, Smith J. A mosquito survey of the twin-island Caribbean nation of Saint Kitts and Nevis, 2010. J Am Mosq Control Assoc. 2015;31:360–3. https://doi.org/10.2987/moco-31-04-360-363.1.

    Article 
    PubMed 

    Google Scholar
     

  • Belkin JN, Heinemann SJ. Collection records of the project “mosquitoes of Middle America”. 4. Leeward Islands: Anguilla (ANG), Antigua (ANT), Barbuda (BAB), Montserrat (MNT), Nevis (NVS), St. Kitts (KIT). Mosquito Syst. 1976;8:123–62.


    Google Scholar
     

  • Hoque MM, Adekanmbi F, Barua S, Rahman KS, Aida V, Anderson B, et al. Peptide ELISA and FRET-qPCR Identified a significantly higher prevalence of Chlamydia suis in domestic pigs than in feral swine from the State of Alabama USA. Pathogens. 2021. https://doi.org/10.3390/pathogens10010011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poudel A, Hoque MM, Madere S, Bolds S, Price S, Barua S, et al. Molecular and serological prevalence of Leptospira spp. in feral pigs (Sus scrofa) and their habitats in Alabama USA. Pathogens. 2020. https://doi.org/10.3390/pathogens9100857.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeGraves FJ, Gao D, Kaltenboeck B. High-sensitivity quantitative PCR platform. Biotechniques. 2003;34:106–10. https://doi.org/10.2144/03341rr01.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cansado-Utrilla C, Jeffries CL, Kristan M, Brugman VA, Heard P, Camara G, et al. An assessment of adult mosquito collection techniques for studying species abundance and diversity in Maferinyah, Guinea. Parasite Vector. 2020. https://doi.org/10.1186/s13071-020-04023-3.

    Article 

    Google Scholar
     

  • Rozo-Lopez P, Mengual X. Mosquito species (Diptera, Culicidae) in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology. Zookeys. 2015;513:39–64. https://doi.org/10.3897/zookeys.513.9561.

    Article 

    Google Scholar
     

  • Morlais I, Severson DW. Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome C oxidase subunit I (COI) from Aedes aegypti. DNA Seq. 2002;13:123–7. https://doi.org/10.1080/10425170290030051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erik Helmersson AL, Karin Troell: Molecular identification of mosquito species evaluation of a rapid DNA extraction method together with DNA barcoding as a tool for identification of species analytical uppsala university, and the national veterinary institute (SVA): Uppsala University; 2013.

  • Housley DJE, Zalewski ZA, Beckett SE, Venta PJ. Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs. BMC Genomics. 2006. https://doi.org/10.1186/1471-2164-7-253.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mioduchowska M, Czyz MJ, Goldyn B, Kur J, Sell J. Instances of erroneous DNA barcoding of metazoan invertebrates: are universal cox1 gene primers too “universal”? PLoS One. 2018;13:e0199609. https://doi.org/10.1371/journal.pone.0199609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunay F, Alten B, Simsek F, Aldemir A, Linton YM. Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Trop. 2015;143:112–20. https://doi.org/10.1016/j.actatropica.2014.10.013.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Jiang F, Lu H, Kang X, Wang Y, Zou Z, et al. Mosquito diversity and population genetic structure of six mosquito species from Hainan Island. Front Genet. 2020;11:602863. https://doi.org/10.3389/fgene.2020.602863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sa IL, Sallum MA. Comparison of automatic traps to capture mosquitoes (Diptera: Culicidae) in rural areas in the tropical Atlantic rainforest. Mem Inst Oswaldo Cruz. 2013;108:1014–20. https://doi.org/10.1590/0074-0276130474.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply