Optical heating and luminescence thermometry combined in a Cr3+-doped YAl3(BO3)4 | Scientific Reports – Nature.com

  • Brites, C. D. S. et al. Thermometry at the nanoscale. Nanoscale 4, 4799 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Back, M. et al. Effective ratiometric luminescent thermal sensor by Cr3+-doped mullite Bi2Al4O9 with robust and reliable performances. Adv. Opt. Mater. 8, 2000124 (2020).

    CAS  Article  Google Scholar 

  • Suo, H. et al. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photon Rev. 15, 2000319 (2021).

    ADS  CAS  Article  Google Scholar 

  • Wang, Q. et al. Ratiometric optical thermometer with high sensitivity based on dual far-red emission of Cr3+ in Sr2MgAl22O36. Ceram. Int. 46, 5008–5014 (2020).

    CAS  Article  Google Scholar 

  • Dramićanin, M. D. Trends in luminescence thermometry. J. Appl. Phys. 128, 040902 (2020).

    ADS  Article  Google Scholar 

  • Rai, V. K. Temperature sensors and optical sensors. Appl. Phys. B 88, 297–303 (2007).

    ADS  CAS  Article  Google Scholar 

  • Zograf, G. P. et al. Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating. Nano Lett. 17, 2945–2952 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Lin, Y. et al. Temperature-dependent luminescence of BaLaMgNbO6:Mn4+, Dy3+ phosphor for dual-mode optical thermometry. Opt. Mater. 95, 109199 (2019).

    CAS  Article  Google Scholar 

  • Allison, S. W., Cates, M. R., Noel, B. & Gillies, G. T. Monitoring permenent-magnet motor heating with phosphor thermometry. IEEE Trans. Instrum. Meas. 37, 637–641 (1988).

    Article  Google Scholar 

  • Khalid, A. H. & Kontis, K. Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications. Sensors 8, 5673–5744 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Back, M. et al. Revisiting Cr3+-doped Bi2Ga4O9 spectroscopy: Crystal field effect and optical thermometric behavior of near-infrared-emitting singly-activated phosphors. ACS Appl. Mater. Interfaces 10, 41512–41524 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Ueda, J. et al. Ratiometric optical thermometry using deep red luminescence from 4T2 and 2E states of Cr3+ in ZnGa2O4 host. Opt. Mater. 85, 510–516 (2018).

    ADS  CAS  Article  Google Scholar 

  • Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012).

    ADS  PubMed  Article  Google Scholar 

  • Marciniak, L., Bednarkiewicz, A., Drabik, J., Trejgis, K. & Strek, W. Optimization of highly sensitive YAG:Cr3+, Nd3+ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues. Phys. Chem. Chem. Phys. 19, 7343–7351 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Brites, C. D. S. et al. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 5, 7572 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Marciniak, L., Bednarkiewicz, A. & Strek, W. The impact of nanocrystals size on luminescent properties and thermometry capabilities of Cr, Nd doped nanophosphors. Sens. Actuators B Chem. 238, 381–386 (2017).

    CAS  Article  Google Scholar 

  • Jaque, D. & Jacinto, C. Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies. J. Lumin. 169, 394–399 (2016).

    CAS  Article  Google Scholar 

  • Trejgis, K., Maciejewska, K., Bednarkiewicz, A. & Marciniak, L. Near-infrared-to-near-infrared excited-state absorption in LaPO4:Nd3+ nanoparticles for luminescent nanothermometry. ACS Appl. Nano Mater. 3, 4818–4825 (2020).

    CAS  Article  Google Scholar 

  • Marciniak, L. & Bednarkiewicz, A. Nanocrystalline NIR-to-NIR luminescent thermometer based on Cr3+, Yb3+ emission. Sens. Actuators B Chem. 243, 388–393 (2017).

    CAS  Article  Google Scholar 

  • Marciniak, L., Bednarkiewicz, A., Kowalska, D. & Strek, W. A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J. Mater. Chem. C 4, 5559–5563 (2016).

    CAS  Article  Google Scholar 

  • Bednarkiewicz, A., Marciniak, L., Carlos, L. D. & Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 12, 14405–14421 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Marciniak, L., Bednarkiewicz, A. & Elzbieciak, K. NIR–NIR photon avalanche based luminescent. J. Mater. Chem. C Mater 6, 7568–7575 (2018).

    CAS  Article  Google Scholar 

  • Wang, S., Westcott, S. & Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 106, 11203–11209 (2002).

    CAS  Article  Google Scholar 

  • Brites, C. D. S., Balabhadra, S. & Carlos, L. D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 7, 1801239 (2019).

    Article  Google Scholar 

  • Elzbieciak-Piecka, K., Suta, M. & Marciniak, L. Structurally induced tuning of the relative sensitivity of LaScO3:Cr3+ luminescent thermometers by co-doping lanthanide ions. Chem. Eng. J. 421, 129757 (2021).

    CAS  Article  Google Scholar 

  • Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • van Swieten, T. P. et al. Mapping elevated temperatures with a micrometer resolution using the luminescence of chemically stable upconversion nanoparticles. ACS Appl. Nano Mater. 4, 4208–4215 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  • Chi, F. et al. Multimodal temperature sensing using Zn2GeO4:Mn2+ phosphor as highly sensitive luminescent thermometer. Sens. Actuators B Chem. 296, 126640 (2019).

    CAS  Article  Google Scholar 

  • Piotrowski, W., Kniec, K. & Marciniak, L. Enhancement of the Ln3+ ratiometric nanothermometers by sensitization with transition metal ions. J. Alloys Compd. 870, 159386 (2021).

    CAS  Article  Google Scholar 

  • Shen, Y., Lifante, J., Fernández, N., Jaque, D. & Ximendes, E. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14, 4122–4133 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Qiu, X. et al. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 11, 4 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Piñol, R., Brites, C. D. S., Silva, N. J., Carlos, L. D. & Millan, A. In Micro and Nano Technologies: Nanoscale Thermometry for Hyperthermia Applications (eds Raluca, M. F. & De La Fuente, J. M.) 139–172 (Elsevier, 2019).

  • Ximendes, E. et al. Infrared-emitting multimodal nanostructures for controlled in vivo magnetic hyperthermia. Adv. Mater. 33, 2100077 (2021).

    CAS  Article  Google Scholar 

  • Beik, J. et al. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control Release 235, 205–221 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Marciniak, L., Kniec, K., Elzbieciak, K. & Bednarkiewicz, A. In Near Infrared-Emitting Nanoparticles for Biomedical Applications: Non-plasmonic NIR-Activated Photothermal Agents for Photothermal Therapy. (eds Benayas, A. et al.) 305–347 (Springer International Publishing, 2020).

  • Suo, H., Zhao, X., Zhang, Z. & Guo, C. 808 nm light-triggered thermometer-heater upconverting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2. ACS Appl. Mater. Interfaces 9, 43438–43448 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Ximendes, E. C. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 16, 1695–1703 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Jaque, D. et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Shi, H. et al. Highly precise FIR thermometer based on the thermally enhanced upconversion luminescence for temperature feedback photothermal therapy. RSC Adv. 12, 8274–8282 (2022).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Paściak, A., Pilch-Wróbel, A., Marciniak, Ł, Schuck, P. J. & Bednarkiewicz, A. Standardization of methodology of light-to-heat conversion efficiency determination for colloidal nanoheaters. ACS Appl. Mater. Interfaces 13, 44556–44567 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  • Suo, H. et al. All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window. J. Mater. Chem. C 5, 1501–1507 (2017).

    CAS  Article  Google Scholar 

  • Yan, H. et al. Smart all-in-one thermometer-heater nanoprobe based on postsynthetical functionalization of a Eu(III)-metal–organic framework. Anal. Chem. 91, 5225–5234 (2019).

    CAS  PubMed  Article  Google Scholar 

  • Lu, H. et al. Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: Temperature sensor and optical heater. J. Lumin. 191, 13–17 (2017).

    CAS  Article  Google Scholar 

  • Du, P., Luo, L., Huang, X. & Yu, J. S. Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater. J. Colloid Interface Sci. 514, 172–181 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Du, P., Luo, L., Park, H. K. & Yu, J. S. Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chem. Eng. J. 306, 840–848 (2016).

    CAS  Article  Google Scholar 

  • Ximendes, E. C. et al. Self-monitored photothermal nanoparticles based on core–shell engineering. Nanoscale 8, 3057–3066 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Elzbieciak-Piecka, K., Ledwa, K. & Marciniak, L. A novel approach in light-to-heat conversion: Cr3+-based photothermal agent. Mater. Today Chem. 26, 101039 (2022).

    CAS  Article  Google Scholar 

  • Back, M. et al. Boltzmann thermometry in Cr3+-doped Ga2O3 polymorphs: The structure matters!. Adv. Opt. Mater. 9, 2100033 (2021).

    CAS  Article  Google Scholar 

  • Back, M., Ueda, J., Brik, M. G. & Tanabe, S. Pushing the limit of boltzmann distribution in Cr3+-doped CaHfO3 for cryogenic thermometry. ACS Appl. Mater. Interfaces 12, 38325–38332 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Ćirić, A., Ristić, Z., Periša, J., Antić, Ž & Dramićanin, M. D. MgAl2O4:Cr3+ luminescence thermometry probe in the physiological temperatures range. Ceram. Int. 47, 27151–27156 (2021).

    Article  Google Scholar 

  • Ćirić, A. et al. Sensitive temperature reading from intensity ratio of Cr3+ and defects’ emissions in MgTiO3:Cr3+. Ceram. Int. 47, 31915–31919 (2021).

    Article  Google Scholar 

  • Szysiak, A. et al. Nanopowders of YAl3(BO3)4 doped by Nd, Yb and Cr obtained by sol-gel method: Synthesis, structure and luminescence properties. Mater. Res. Bull. 44, 2228–2232 (2009).

    CAS  Article  Google Scholar 

  • Ferrari, C. R., Baccia, M., Ibanez, A. & Hernandes, A. C. Thermal and structural investigation of Er:YAl3(BO3)4 nanocrystalline powders. J. Therm. Anal. Calorim. 95, 59–62 (2009).

    CAS  Article  Google Scholar 

  • Bokshits, Y. V., Brezhneva, N. Y. & Shevchenko, G. P. Effect of the chemical nature of precipitants on the formation of ultrafine YAl3(BO3)4: Ce powders. Inorg. Mater. 52, 1143–1148 (2016).

    CAS  Article  Google Scholar 

  • Żmija, J. et al. Synthesis and characteristics of optical properties of crystalline YAl3(BO3)4:Cr,Ce. J. Achiev. Mater. Manuf. Eng. 48, 24–28 (2011).

    Google Scholar 

  • Satheesh Kumar, R., Ponnusamy, V. & Jose, M. T. Synthesis and photoluminescence properties of Sm3+-doped YAl3(BO3)4 phosphor. Luminescence 29, 649–656 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Mills, A. D. Crystallographic data for new rare earth borate compounds RX3(BO3)4. Inorg. Chem. 1, 960–961 (1962).

    CAS  Article  Google Scholar 

  • Plachinda, P. A. & Belokoneva, E. L. High temperature synthesis and crystal structure of new representatives of the huntite family. Cryst. Res. Technol. 43, 157–165 (2008).

    CAS  Article  Google Scholar 

  • Malysa, B., Meijerink, A. & Jüstel, T. Temperature dependent luminescence Cr3+-doped GdAl3(BO3)4 and YAl3(BO3)4. J. Lumin. 171, 246–253 (2016).

    CAS  Article  Google Scholar 

  • Huang, D. et al. A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes. J. Mater. Chem. C 9, 164–172 (2021).

    CAS  Article  Google Scholar 

  • Maglia, F. et al. Incorporation of trivalent cations in synthetic garnets A3B5O12 (A=Y, Lu-La, B=Al, Fe, Ga). J. Phys. Chem. B 110, 6561–6568 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Malysa, B., Meijerink, A., Wu, W. & Jüstel, T. On the influence of calcium substitution to the optical properties of Cr3+doped SrSc2O4. J. Lumin. 190, 234–241 (2017).

    CAS  Article  Google Scholar 

  • Back, M., Trave, E., Ueda, J. & Tanabe, S. Ratiometric optical thermometer based on dual near-infrared emission in Cr3+-doped bismuth-based gallate host. Chem. Mater. 28, 8347–8356 (2016).

    CAS  Article  Google Scholar 

  • Leave a Reply